Ce module implémente le type de données ltree pour représenter des labels de données stockés dans une structure hiérarchique de type arbre. Des fonctionnalités étendues de recherche sont fournies.
Un label est une séquence de caractères alphanumériques et de tirets bas (par exemple, dans la locale C, les caractères A-Za-z0-9_ sont autorisés). La longueur d'un label est limité par 256 octets.
Exemples : 42, Personal_Services
Le chemin de label est une séquence de zéro ou plusieurs labels séparés par des points, par exemple L1.L2.L3, ce qui représente le chemin de la racine jusqu'à un nœud particulier. La longueur d'un chemin est limité à 65 Ko, mais une longueur inférieure ou égale à 2 Ko est préférable. Nous considérons qu'il ne s'agit pas d'une limitation stricte. Par exemple, lataille maximum d'un chemin de label dans le catalogue DMOZ fait environ 240 octets !
Exemple : Top.Countries.Europe.Russia
Le module ltree fournit plusieurs types de données :
ltree stocke un chemin de label.
lquery représente un type d'expression rationnelle du chemin pour la correspondance de valeurs de type ltree. Un mot simple établit une correspondance avec ce label dans un chemin. Le caractère joker (*) est utilisé pour spécifier tout nombre de labels (niveaux). Par exemple :
foo Correspond au chemin exact foo *.foo.* Correspond à tout chemin contenant le label foo *.foo Correspond à tout chemin dont le dernier label est foo
Les caractères joker peuvent être quantifiés pour restreindre le nombre de labels de la correspondance :
*{n} Correspond à exactement n labels *{n,} Correspond à au moins n labels *{n,m} Correspond à au moins n labels mais à pas plus de m *{,m} Correspond à au plus m labels -- identique à *{0,m}
Il existe plusieurs modificateurs qui peuvent être placés à la fin d'un label sans joker dans un lquery pour que la correspondance se fasse sur plus que la correspondance exacte :
@ Correspondance sans vérification de casse, par exemple a@ établit une correspondance avec A * Correspondance d'un préfixe pour un label, par exemple foo* établit une correspondance avec foobar % Correspondance avec les mots séparés par des tirets bas
Le comportement de % est un peu complexe. Il tente d'établir une correspondance avec des mots plutôt qu'avec un label complet. Par exemple, foo_bar% établit une correspondance avec foo_bar_baz mais pas avec foo_barbaz. S'il est combiné avec *, la correspondance du préfixe s'applique à chaque mot séparément. Par exemple, foo_bar%* établit une correspondance avec foo1_bar2_baz, mais pas avec foo1_br2_baz.
De plus, vous pouvez écrire plusieurs labels séparés avec des | (OR) pour établir une correspondance avec un des labels, et vous pouvez placer un ! (NOT) au début pour établir une correspondance avec tout sauf une des différentes alternatives.
Voici un exemple annoté d'une lquery :
Top.*{0,2}.sport*@.!football|tennis.Russ*|Spain a. b. c. d. e.
Cette requête établira une correspondance avec tout chemin qui :
commence avec le label Top
et suit avec zéro ou deux labels jusqu'à
un label commençant avec le préfixe sport quelque soit la casse
ensuite un label ne correspondant ni à football ni à tennis
et se termine enfin avec un label commençant par Russ ou correspond strictement à Spain.
ltxtquery represente en quelque sorte une recherche plein texte pour la correspondance de valeurs ltree. Une valeur ltxtquery contient des mots, quelque fois avec les modificateurs @, *, % à la fin ; les modifications ont la même signification que dans un lquery. Les mots peuvent être combinés avec & (AND), | (OR), ! (NOT) et des parenthèses. La différence clé d'une lquery est que ltxtquery établit une correspondance avec des mots sans relation avec leur position dans le chemin de labels.
Voici un exemple de ltxtquery :
Europe & Russia*@ & !Transportation
Ceci établira une correspondance avec les chemins contenant le label Europe et tout label commençant par Russia (quelque soit la casse), mais pas les chemins contenant le label Transportation. L'emplacement de ces mots dans le chemin n'est pas important. De plus, quand % est utilisé, le mot peut établir une correspondance avec tout mot séparé par un tiret bas dans un label, quelque soit sa position.
Note : ltxtquery autorise un espace blanc entre des symboles mais ltree et lquery ne le permettent pas.
Le type ltree dispose des opérateurs de comparaison habituels =, <>, <, >, <=, >=. Les comparaisons trient dans l'ordre du parcours d'un arbre, avec les enfants d'un nœud trié par le texte du label. De plus, les opérateurs spécialisés indiqués dans Tableau F.14, « Opérateurs ltree » sont disponibles.
Tableau F.14. Opérateurs ltree
Opérateur | Retour | Description |
---|---|---|
ltree @> ltree | boolean | l'argument gauche est-il un ancêtre de l'argument droit (ou identique) ? |
ltree <@ ltree | boolean | l'argument gauche est-il un descendant de l'argument droit (ou identique) ? |
ltree ~ lquery | boolean | est-ce que ltree établie une correspondance avec lquery ? |
lquery ~ ltree | boolean | est-ce que ltree établie une correspondance avec lquery ? |
ltree ? lquery[] | boolean | est-ce que ltree établie une correspondance avec tout any lquery dans ce tableau ? |
lquery[] ? ltree | boolean | est-ce que ltree établie une correspondance avec tout lquery dans ce tableau ? |
ltree @ ltxtquery | boolean | est-ce que ltree établie une correspondance avec ltxtquery ? |
ltxtquery @ ltree | boolean | est-ce que ltree établie une correspondance avec ltxtquery ? |
ltree || ltree | ltree | concatène des chemins ltree |
ltree || text | ltree | convertit du texte en ltree et concatène |
text || ltree | ltree | convertit du texte en ltree et concatène |
ltree[] @> ltree | boolean | est-ce que le tableau contient un ancêtre de ltree ? |
ltree <@ ltree[] | boolean | est-ce que le tableau contient un ancêtre de ltree ? |
ltree[] <@ ltree | boolean | est-ce que le tableau contient un descendant de ltree ? |
ltree @> ltree[] | boolean | est-ce que le tableau contient un descendant de ltree ? |
ltree[] ~ lquery | boolean | est-ce que le tableau contient tout chemin correspondant à lquery ? |
lquery ~ ltree[] | boolean | est-ce que le tableau contient tout chemin correspondant à lquery ? |
ltree[] ? lquery[] | boolean | est-ce que le tableau ltree contient tout chemin correspondant à un lquery ? |
lquery[] ? ltree[] | boolean | est-ce que le tableau ltree contient tout chemin correspondant à un lquery ? |
ltree[] @ ltxtquery | boolean | est-ce que le tableau contient tout chemin correspondant à ltxtquery ? |
ltxtquery @ ltree[] | boolean | est-ce que le tableau contient tout chemin correspondant à ltxtquery ? |
ltree[] ?@> ltree | ltree | première entrée du tableau ancêtre de ltree ; NULL si aucun |
ltree[] ?<@ ltree | ltree | première entrée du tableau descendant de ltree ; NULL si aucun |
ltree[] ?~ lquery | ltree | première entrée du tableau établissant une correspondance avec lquery ; NULL si aucune |
ltree[] ?@ ltxtquery | ltree | première entrée du tableau établissant une correspondance avec ltxtquery ; NULL si aucune |
Lesopérateurs operators <@, @>, @ et ~ ont des versions analogues ^<@, ^@>, ^@, ^~, qui sont identiques sauf qu'elles n'utilisent pas les index. Elles sont utiles pour tester.
Les fonctions disponibles sont indiquées dans Tableau F.15, « Fonctions ltree ».
Tableau F.15. Fonctions ltree
Fonction | Type en retour | Description | Exemple | Résultat |
---|---|---|---|---|
subltree(ltree, int start, int end) | ltree | sous-chemin de of ltree de la position start à la position end-1 (counting from 0) | subltree('Top.Child1.Child2',1,2) | Child1 |
subpath(ltree, int offset, int len) | ltree | sous-chemin de ltree commençant à la position offset, de longueur len. Si offset est négatif, le sous-chemin commence de ce nombre à partir de la fin du chemin. Si len est négatif, laisse ce nombre de labels depuis la fin du chemin. | subpath('Top.Child1.Child2',0,2) | Top.Child1 |
subpath(ltree, int offset) | ltree | sous-chemin de ltree commençant à la position offset, s'étendant à la fin du chemin. Si offset est négatif, le sous-chemin commence de ce point jusqu'à la fin du chemin. | subpath('Top.Child1.Child2',1) | Child1.Child2 |
nlevel(ltree) | integer | nombre de labels dans le chemin | nlevel('Top.Child1.Child2') | 3 |
index(ltree a, ltree b) | integer | position de la première occurrence de b dans a ; -1 si introuvable | index('0.1.2.3.5.4.5.6.8.5.6.8','5.6') | 6 |
index(ltree a, ltree b, int offset) | integer | position de la première occurrence de b dans a, la recherche commence à offset ; un offset négatif signifie un commencement à -offset labels de la fin du chemin | index('0.1.2.3.5.4.5.6.8.5.6.8','5.6',-4) | 9 |
text2ltree(text) | ltree | convertit du text en ltree | ||
ltree2text(ltree) | text | convertit du ltree en text | ||
lca(ltree, ltree, ...) | ltree | plus petit ancêtre commun, c'est-à-dire préfixe commun le plus long des chemins (jusqu'à huit arguments supportés) | lca('1.2.2.3','1.2.3.4.5.6') | 1.2 |
lca(ltree[]) | ltree | plus petit ancêtre commun, c'est-à-dire préfixe commun le plus long des chemins | lca(array['1.2.2.3'::ltree,'1.2.3']) | 1.2 |
ltree accepte différents types d'index pouvant améliorer les performances des oopérateurs indiqués :
Index B-tree sur ltree : <, <=, =, >=, >
Index GiST sur ltree : <, <=, =, >=, >, @>, <@, @, ~, ?
Exemple de la création d'un tel index :
CREATE INDEX path_gist_idx ON test USING GIST (path);
Index GiST sur ltree[] : ltree[] <@ ltree, ltree @> ltree[], @, ~, ?
Exemple de la création d'un tel index :
CREATE INDEX path_gist_idx ON test USING GIST (array_path);
Note : ce type d'index est à perte.
Cet exemple utilise les données suivantes (disponibles dans le fichier contrib/ltree/ltreetest.sql des sources) :
CREATE TABLE test (path ltree); INSERT INTO test VALUES ('Top'); INSERT INTO test VALUES ('Top.Science'); INSERT INTO test VALUES ('Top.Science.Astronomy'); INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics'); INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology'); INSERT INTO test VALUES ('Top.Hobbies'); INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy'); INSERT INTO test VALUES ('Top.Collections'); INSERT INTO test VALUES ('Top.Collections.Pictures'); INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy'); INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars'); INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Galaxies'); INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Astronauts'); CREATE INDEX path_gist_idx ON test USING GIST (path); CREATE INDEX path_idx ON test USING BTREE (path);
Maintenant, nous avons une table test peuplée avec des données décrivant la hiérarchie ci-dessous :
Top / | \ Science Hobbies Collections / | \ Astronomy Amateurs_Astronomy Pictures / \ | Astrophysics Cosmology Astronomy / | \ Galaxies Stars Astronauts
Nous pouvons faire de l'héritage :
ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science'; path ------------------------------------ Top.Science Top.Science.Astronomy Top.Science.Astronomy.Astrophysics Top.Science.Astronomy.Cosmology (4 rows)
Voici quelques exemples de correspondance de chemins :
ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*'; path ----------------------------------------------- Top.Science.Astronomy Top.Science.Astronomy.Astrophysics Top.Science.Astronomy.Cosmology Top.Collections.Pictures.Astronomy Top.Collections.Pictures.Astronomy.Stars Top.Collections.Pictures.Astronomy.Galaxies Top.Collections.Pictures.Astronomy.Astronauts (7 rows) ltreetest=> SELECT path FROM test WHERE path ~ '*.!pictures@.*.Astronomy.*'; path ------------------------------------ Top.Science.Astronomy Top.Science.Astronomy.Astrophysics Top.Science.Astronomy.Cosmology (3 rows)
Voici quelques exemples de recherche plein texte :
ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@'; path ------------------------------------ Top.Science.Astronomy Top.Science.Astronomy.Astrophysics Top.Science.Astronomy.Cosmology Top.Hobbies.Amateurs_Astronomy (4 rows) ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@'; path ------------------------------------ Top.Science.Astronomy Top.Science.Astronomy.Astrophysics Top.Science.Astronomy.Cosmology (3 rows)
Construction d'un chemin en utilisant les fonctions :
ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM test WHERE path <@ 'Top.Science.Astronomy'; ?column? ------------------------------------------ Top.Science.Space.Astronomy Top.Science.Space.Astronomy.Astrophysics Top.Science.Space.Astronomy.Cosmology (3 rows)
Nous pouvons simplifier ceci en créant une fonction SQL qui insère un label à une position spécifié dans un chemin :
CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);' LANGUAGE SQL IMMUTABLE; ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@ 'Top.Science.Astronomy'; ins_label ------------------------------------------ Top.Science.Space.Astronomy Top.Science.Space.Astronomy.Astrophysics Top.Science.Space.Astronomy.Cosmology (3 rows)
Des extensions supplémentaires sont disponibles pour implémenter des transformations pour le type ltree pour PL/Python. Les extensions sont appelées ltree_plpythonu, ltree_plpython2u et ltree_plpython3u (voir Section 44.1, « Python 2 et Python 3 » pour la convention de nommage PL/Python). Si vous installez ces transformations et les spécifier lors de la création d'une fonction, les valeurs ltree sont converties en listes Python. Il est à noter que l'inverse n'est pas encore supportée.
Tout le travail a été réalisé par Teodor Sigaev (<teodor@stack.net>) et Oleg Bartunov (<oleg@sai.msu.su>). Voir http://www.sai.msu.su/~megera/postgres/gist pour des informations supplémentaires. Les auteurs voudraient remercier Eugeny Rodichev pour son aide. Commentaires et rapports de bogue sont les bienvenus.